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Non-Newtonian Flow Between Concentric Cylinders 
Calculated from Thermophysical Properties 
Obtained from Simulations ~ 

A. P. Narayan,-" J. C. Rainwater, 3"4 and H. J. M. Hanley -''3 

A study of the Weissenberg effect I rod climbing in a stirred system l based on 
nonequilibrium molecular dynamics [NEMD) is reported. Simulation results 
from a soft-sphere fluid are used to obtain a sell-consistent free-surface profile 
of the fluid of finite compressibility undergoing Couctte flow between concentric 
cylinders. A numerical procedure is then applied to calculate the height profile 
for a hypothetical fluid with thermophysical properties of the soft-sphere liquid 
and of a dense colloidal suspension. The height profile calculated is identified 
with shear thickening and the forms of the viscometric functions. The maximum 
climb occurs between the cylinders rather th:m at the inner cylinder. 

KEY WORDS: colloidz, I suspension: Couette flow: rheology; shear thickening; 
soli-sphere fluid: Wcissenberg effect. 

!. INTRODUCTION 

In previous work, Rainwater et al. [ I, 2] discussed an approach to solve 
a rheological problem that differed from the traditional. They solved a 
rheological flow pattern directly, git,en the thermodynamic properties and 
the viscometric functions of the fluid. In contrast, the conventional approach 
infers the fluid properties after having assumed the equations of motion. The 
direct approach was feasible because nonequilibrium molecular dynamics 
( N E M D )  can in principle predict the properties for a model liquid under 
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shear. Specifically, Rainwater  et al. examined the Weissenberg effect [3 ] .  
which is the phenomenon  observed when a non-Newtonian  lluid is sheared 
between vertical, concentric cylinders. In this paper,  we refine the calcula- 
tions of Refs. 1 and 2 by using density dependences of  some viscometric 
functions that were not previously available and also investigate a possible 
Weissenberg efl'ect for a colloidal suspension that displays dramat ic  varia- 
tions in its viscometric functions. 

2. E Q U A T I O N S  OF M O T I O N  A N D  THEIR S O L U T I O N  

Tile equat ions of  mot ion are those which describe the behavior  of  a 
flt, id between vertical, concentric rotat ing cylinders given [4 ]  cylindrical 
coordinates  (r, O, :)  with their respective unit vectors ~;,, ~;,,. and ~_. where 
z = 0 is the rest-state free surface of the liquid. We define the radii of  the 
tuner and outer  cylinders as a and h with angular  velocities of , 'oration g'2 
and ,;..Q, respectively: for this calculation ). = 0. 

The assumpt ions  invoked in the problem are, first, that the pressure 
tensor does not depend on the vorticity or the higher-order  velocity 
gradients, and second, that the resuhs and expressions lbr planar  shear 
flow carry over  to cylindrical shear flow. We will use nume,'ical values 
of" the propert ies  of  a model fh, id calculated fi'om N E M D  in the planar  
configuration. A detailed derivation Ibr the appropr ia te  equat ions of  
mot ion can be found in Ref 1. and here we only list the set of  coupled 
nonlinear algebraic and integral equations in terms of the pressure tensor 
P and its components  P,,. where ft'/') = (r. 0. z). the pressure p. the s t ream 
velocity u, the density p. the shear rate 7, the shear viscosity q , .  and the 
two coefl'icients representing the viscometric functions, q and q . .  which 
rep,esent the normal  stresses, q ( ' / )= - [P , , , -P , ] / 2 " /  and q d T ) =  
- { P:: - [ ½( P,,,, + P ,  ) ] }/27 [ 5 ]. The equat ions are 

B 
"/(rl=r,_q~[;.lrl. p(r) ], B = c o n s t  (11 

" d r ' / r ' )  u,, = g2r + r r' ( 2 ) 

,-' { )[,,,(r )]-" )'/ )]1 _;(i [7( ).p( P,.,(r)=P,. , . (a)+ ), ~h" p(r '  r' ' ") r' r' r' ~ (3) 

P:_-(r)= P , , ( r ) -  ; ' ( r ) {2q, , [T( r ) ,p( r ) ]  + q [T( r ) ,p( r ) ] }  (4) 

4 P::(r) = p [ / , ' ) ,  p(r ) ]  --~ ;'(r),/,,[ T(r ). p(,')] (5) 
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with the no-slip boundary condition at the wall, 

j " )'(r) 
uo(/~ ) = .Q/~ + / ~  dr = 0 ( 6 ) 

d J" 

The position-dependent density is written as 

p(r) = I~ + ~p(r) (7) 

where/5 is the average density and ~plr) is calculated using the condition 

j "' Ap 
r dr ~p(r) = ~ -  ( I t  2 - a  2 ) (8) 

( t  

where dp is the change in the average density of the fluid as a result of the 
applied shear. Equation (8) replaces the normalization equation used 
previously [ I ] ,  where the total density was constrained to remain at the 
average density. In the current scheme, an average shear rate is calculated 
fi'om the shear rate profile, and the density corresponding to this is 
evaluated given the p i' relationship from simulation, which in turn is used 
as an input to the iterative process [6 ] .  The free-surf:ace profile is given by 
the equation 

P : : ( r )  + C 
h ( r )  - ( 9 )  

Pg 

where C is a constant and g is the acceleration due to gravity. 
The above equations are solved numerically and iteratively [6 ] .  

Initially, the density is set to be constant. We start by guessing at B in 
Eq. (I) ,  and thus obtain a shear rate profile 7it). Since Pl + = q'" '  -PI+' ~.,,~, 2 
Eq. ( ] )  is a cubic equation in 7' -~ and we solve for 7 by extracting the 
appropriate root. The calculation of the shear-rate variation also evaluates 
the fluid velocity at the outer cylinder, which we set equal to zero. We keep 
varying B until this boundary condition is satisfied. The velocity profile is 
then integrated to yield the values for the pressure tensor components from 
Eqs. (3) and (4). 

The expression for the pressure tensor from the NEMD simulation 
also yields a direct expression for P:_, Eq. (5). However, we find initially 
that the two solutions do not agree. The disagreement arises from out" 
initial imposition of constant density (which, incidentally, implies that the 
fluid is incompressible ). The final solution is then obtained by a series of 
iterations, where the local density is perturbed using Eq. (7J until the two 
expressions for the P_.__ match to within a certain precision. In this calcula- 
tion, a precision value of 10 3 is used. 
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l iqu id  [ 7 ] .  

3. RESULTS FOR THE SOFT-SPHERE FLUID 

Out numerical estimate of the free-surface profile for the fluid between 
rotating cylinders is based oll the thermophysical and rheological proper- 
ties of the soft-sphere fluid reported by Hood et al. [7]  from their NEMD 
study. The variation of these properties as a function of pressure, density, 
and the shear rate is given in dimensionless form in the appendix to Ref. 7 
and is displayed in Fig. 1. To proceed, we have to select numerical values 
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Fig. 2. Plot of  the calculated P::(r), proport ional  to tile free-surface 
height profile, for the soft-sphere l iquid under shear. P:= = 0 corre- 

sponds to  the  free s u r f a c e  o f  the  l i qu id  a t  a s t a t e  o f  rest .  
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for the geometry of the problem. Accordingly, to conform with the previous 
calculations of Rainwater et al. [ 1 ] ,  the radii of the inner and outer 
cylinders were set at 0.2 and 2.0, and the computa t ion  was carried out with 
2 = 0 and .('2 = - 0.3. 

The solution gives the height profile shown in Fig. 2. The result is in 
excellent agreement with the earlier work, though the depth of  the depres- 
sion is larger. The final height profile, which is proport ional  to P::(r), is the 
s ame- - a  depression at the inner cylinder and a flattening out as the radius 
increases and the shear rate falls off, leaving the surface near the outer 
cylinder virtually in a state of rest. 

4. T H E  W E I S S E N B E R G  E F F E C T  IN  A 

D E N S E  C O L L O I D A L  S U S P E N S I O N  

We use the calculation of  the simple fluid as the basis for the second 
objective of this paper: namely, to predict a Weissenberg effect for a dense 
colloidal suspension. Laun [ 8 ]  has investigated the behavior of  a dense 
colloidal suspension of 322 nm-diameter  charged latex spheres in glycol at 
a volume fraction of  0.51. The fluid has interesting properties. It displays 
shear thinning at low shears and has a steep shear-thickening regime at 
higher shears as shown in Fig. 3. Figure 3 plots the shear viscosity versus 
the shear stress r, where r = q + ;'. Such behavior is not unusual, but it was 
observed that the normal pressure differences satisfied the relations 
N~= - q + i '  and N~=-N~/2,  where Nt and N_~ represent the fii'st and 
second normal stresses, for a shear 7 >  10s J 
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Fig. 3. Plot of the shear viscosity q. and the normal stress :\'~ as experimentally 
determined by Laun [8] Ibr a colloidal suspension. 
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Hence, m our  notat ion,  

and 

q,, = 0 ( I 0 ) 

q 
q = - - 7 -  ( 1 1 )  

The free-surface height profile was computed by means of the proce- 
dure described. Our  fluid is a hypothetical composite that obeys the Laun 
viscometric functions for ~'> 10s ~, but has the properties of the soft- 
sphere liquid when subjected to a lower shear rate. In order to merge 
smoothly the shear-viscosity function q+(}') over the whole }' range, we 
constructed dimensionless curves, q~ (}')/q~ (0) vs. I;', where q+(0)  is the 
viscosity at zero shear, for both fluids. The unsealed shear viscosity for the 
Latm lluid obeys the relationship q~ =2.137967 ,,.,,7 P a . s  in the shear- 
throning retfime~ and q + = 1.269 x 10 js.,~ss.~ss, Pa .  s m the shear-thickening 
regime. The parameter  t is a relaxation time. A proper choice for t for the 
Laun viscosities merges the two data sets. We choose t = 10 s for the Laun 
data [6 ] ,  and we have a dimensionless t = 1 for the soft sphere. Given a 
scaled shear viscosity and a scaled shear rate, the viscometric functions 
follow from Eqs . (10)  and (I1). We further assume that the density 
dependences of the viscosities are those of  the soft sphere. We also assume 
the pressure dependence on the shear rate given for the soft-sphere fluid 
extrapolates into the shear-thickening regime. 
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Fig. 4. Plot of the calct , laled P::(r). propor t iona l  to tile free-surface 
height profile. IBr the hypothet ica l  Iluid composed  of the soft-sphere 

fluid and the col loidal  suspension of Latul. Note  the appearance  of a 
bulge. 



Flow Between Concentric Cylinders 353 

The predicted free-surface profile for our hypothetical fluid is shown in 
Fig. 4. The profile is a "bulge" and shows a depression at the inner cylinder, 
a relatively flat profile above the rest-state surface, and a sharp drop near 
the wall. While such a profile is not excluded by the general theory of  the 
Wcissenberg effect [ 4 ]  and resembles one that was observed expcrimcntally 
by Beavers and Joseph [ 9 ]  in a polymer melt, it is unusual. We therelbre 
conclude this paper by speculating why it has this particular fo rm 

The numerical values of  the input parameters required by the equa- 
tions of mot ion are altered systematically and the subsequent height prolile 
is calculated. Details can be Ibund in Ref. 5, and we only list the main 
conclusion here. Let us consider a critical shear rate 7~. above which the 
fluid obeys the Laun relations and displays shear thickening with respect to 
the shear imposed on the liquid. We find that climbing occurs only when 
the maximuna shear rate sustained in the liquid is greater than or equal 
to 7,. Altering the shear-rate profile or arbitrarily adjusting the 7~. causes 
the climbing effect to become more or less pronounced,  depending on the 
degree of overlap. If a shear of  ;.~ is never reached in the rotating fluid, the 
profile reverts to that observed in the simple fluid, which is to be expected. 

Sample calculations [ 6 ]  show that if we include the normal pressure 
differences of  Laun in the calculation but exclude the fact that the fluid is 
shear thickening, we obtain a rod-climbing Weissenberg effect. Hence, it 
appears that the combinat ion of the behavior of  the Laun normal pressure 
differences with shear thickening is responsible tbr the bulge. 
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